类似的还有库仑力,安培力等等。 不过或许是洛伦兹这个名字实在太过微妙了,所以包括许多高中老师在内的师生群体,都会管它叫做洛伦磁力。 1850年的洛伦兹还有三年才会出生,自然还没法提出洛伦兹力的概念。 但另一方面。 洛伦兹是带电粒子在匀强磁场中运动现象的归纳者,他首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,不过却不是现象本身的发现者。 早在1822年的时候,德国人欧文斯便尝试过一个实验: 他将一个带电的小珠子放入磁场中,发现珠子会做圆弧状的运动。 洛伦兹之所以能在相关领域青史留名,所作的贡献并非只是提出一种猜想这么简单,而是因为他归纳了f=qvb*sin(v,b)这么一个公式。 就像大家说小牛发现了万有引力一样。 这句话其实是一种比较普众化的解释,严格意义上来说是错误的。 但是大众又没有涉及到更深层次的必要,所以就有了这么一个比较宽泛的说法。 靠着纯理论能封神的人,在科学史上其实并不多。 因此对于法拉第他们来说。 通过调整磁场的强度,做到将磁场力与电场力互相平衡,并不算一件很困难的事情。 在施加磁场后。 法拉第又关掉了金属电极,观察起了现象。 很快。 在电磁力的作用下,射线开始偏转。 法拉第拿着放大镜以及预先做好的刻度表,记录下了偏转的图形。 接下来的事情就很简单了。 只见法拉第拿起纸笔,在纸上写下了一个公式: q=ne。 这个公式的由来很简单。 在第一个步骤中,法拉第利用静电计测量一定时间内金属筒获得的电量q。 若进入筒内的微粒数为n,每个微粒所带的电量为e,那么q便是n和e的乘积。 接着法拉第又翻了一页书,写下了另一个公式: w=n·1/2mv^2。 这个公式的意义同样非常简单: 经过同样时间后读出温升,若进入筒内微粒的总动能w因碰撞全部转变成热能,那么上升的温度便可以对标计算出总动能w。 而微粒既然是粒子,那么它的动能也便一定符合动能公式——防杠提前说一下,动能公式在1829年就提出来了。 其中的m、v分别为微粒的质量和速度,乘以微粒数就是总动能。 接着只要求出最后磁极偏转的微粒运动轨道的曲率半径r,以及磁场强度h。 那么便可得: hev=mv^2/r。 将上面三个公式互相代入,最终可以得到一个结果: e/m=(2w)/(h^2r^2q)(感谢起点,现在后台总算优化一些了……) 而e/m,便是…… 荷质比! 所谓荷质比,指的便是带电体的电荷量和质量的比值,有些时候也叫作比荷。 这是基本粒子的重要数据之一,也是人类推开微观世界的关键一步。 当初在听徐云讲波动方程的时候,为了弥补法拉第的数学水平,曾经给他打了个高斯灵魂附体的补丁。 不过今天高斯已经到了现场,徐云就不需要再考虑请神了。 只见高斯取过纸笔,飞快的在纸上演算了起来。 五分钟后。 这位小老头随意将笔一丢,轻轻的抖了抖手上的算纸。 只见此时此刻。 纸上赫然写着一个数字: 1.6638*10^11c/kg。 就在高斯准备吹m.paRtSOrdER63.coM